Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.265
Filter
1.
Cell Rep Methods ; 4(4): 100755, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38608690

ABSTRACT

In vitro translation is an important method for studying fundamental aspects of co- and post-translational gene regulation, as well as for protein expression in the laboratory and on an industrial scale. Here, by re-examining and improving a human in vitro translation system (HITS), we were able to develop a minimal system where only four components are needed to supplement human cell lysates. Functional characterization of our improved HITS revealed the synergistic effect of mRNA capping and polyadenylation. Furthermore, we found that mRNAs are translated with an efficiency equal to or higher than existing state-of-the-art mammalian in vitro translation systems. Lastly, we present an easy preparation procedure for cytoplasmic extracts from cultured HeLa cells, which can be performed in any cell culture laboratory. These methodological advances will allow HITSs to become a widespread tool in basic molecular biology research.


Subject(s)
Protein Biosynthesis , RNA, Messenger , Humans , HeLa Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , Polyadenylation , RNA Caps/metabolism , RNA Caps/genetics
2.
Int J Mol Sci ; 25(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38474285

ABSTRACT

The prognosis of patients with malignant melanoma has been improved in recent decades due to advancements in immunotherapy. However, a considerable proportion of patients are refractory to treatment, particularly at advanced stages. This underscores the necessity of developing a new strategy to improve it. Alternative polyadenylation (APA), as a marker of crucial posttranscriptional regulation, has emerged as a major new type of epigenetic marker involved in tumorigenesis. However, the potential roles of APA in shaping the tumor microenvironment (TME) are largely unexplored. Herein, we collected two cohorts comprising melanoma patients who received immune checkpoint inhibitor (ICI) immunotherapy to quantify transcriptome-wide discrepancies in APA. We observed a global change in 3'-UTRs between responders and non-responders, which might involve DNA damage response, angiogenesis, PI3K-AKT signaling pathways, etc. Ten putative master APA regulatory factors for those APA events were detected via a network analysis. Notably, we established an immune response-related APA scoring system (IRAPAss), which exhibited a great performance of predicting immunotherapy response in multiple cohorts. Furthermore, we examined the correlation of APA with TME at the single-cell level using four single-cell immune profiles of tumor-infiltrating lymphocytes (TILs), which revealed an overall discrepancy in 3'-UTR length across diverse T cell populations, probably contributing to immunoregulation in melanoma. In conclusion, our study provides a transcriptional landscape of APA implicated in immunoregulation, which might lay the foundation for developing a new strategy for improving immunotherapy response for melanoma patients by targeting APA.


Subject(s)
Melanoma , Humans , Melanoma/pathology , Polyadenylation , Phosphatidylinositol 3-Kinases/genetics , Transcriptome , 3' Untranslated Regions , Tumor Microenvironment
3.
Wiley Interdiscip Rev RNA ; 15(2): e1837, 2024.
Article in English | MEDLINE | ID: mdl-38485452

ABSTRACT

Most eukaryotic mRNAs and different non-coding RNAs undergo a form of 3' end processing known as polyadenylation. Polyadenylation machinery is present in almost all organisms except few species. In bacteria, the machinery has evolved from PNPase, which adds heteropolymeric tails, to a poly(A)-specific polymerase. Differently, a complex machinery for accurate polyadenylation and several non-canonical poly(A) polymerases are developed in eukaryotes. The role of poly(A) tail has also evolved from serving as a degradative signal to a stabilizing modification that also regulates translation. In this review, we discuss poly(A) tail emergence in prokaryotes and its development into a stable, yet dynamic feature at the 3' end of mRNAs in eukaryotes. We also describe how appearance of novel poly(A) polymerases gives cells flexibility to shape poly(A) tail. We explain how poly(A) tail dynamics help regulate cognate RNA metabolism in a context-dependent manner, such as during oocyte maturation. Finally, we describe specific mRNAs in metazoans that bear stem-loops instead of poly(A) tails. We conclude with how recent discoveries about poly(A) tail can be applied to mRNA technology. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.


Subject(s)
Poly A , Polyadenylation , Poly A/genetics , Poly A/metabolism , RNA/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Eukaryota/genetics , Eukaryota/metabolism
4.
Cell Rep ; 43(3): 113886, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38430516

ABSTRACT

The human WDR33 gene encodes three major isoforms. The canonical isoform WDR33v1 (V1) is a well-characterized nuclear mRNA polyadenylation factor, while the other two, WDR33v2 (V2) and WDR33v3 (V3), have not been studied. Here, we report that V2 and V3 are generated by alternative polyadenylation, and neither protein contains all seven WD (tryptophan-aspartic acid) repeats that characterize V1. Surprisingly, V2 and V3 are not polyadenylation factors but localize to the endoplasmic reticulum and interact with stimulator of interferon genes (STING), the immune factor that induces the cellular response to cytosolic double-stranded DNA. V2 suppresses interferon-ß induction by preventing STING disulfide oligomerization but promotes autophagy, likely by recruiting WIPI2 isoforms. V3, on the other hand, functions to increase STING protein levels. Our study has not only provided mechanistic insights into STING regulation but also revealed that protein isoforms can be functionally completely unrelated, indicating that alternative mRNA processing is a more powerful mechanism than previously appreciated.


Subject(s)
Polyadenylation , mRNA Cleavage and Polyadenylation Factors , Humans , mRNA Cleavage and Polyadenylation Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Membrane Proteins/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Immunity, Innate
5.
Dev Cell ; 59(8): 1058-1074.e11, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38460509

ABSTRACT

During oocyte maturation and early embryogenesis, changes in mRNA poly(A)-tail lengths strongly influence translation, but how these tail-length changes are orchestrated has been unclear. Here, we performed tail-length and translational profiling of mRNA reporter libraries (each with millions of 3' UTR sequence variants) in frog oocytes and embryos and in fish embryos. Contrasting to previously proposed cytoplasmic polyadenylation elements (CPEs), we found that a shorter element, UUUUA, together with the polyadenylation signal (PAS), specify cytoplasmic polyadenylation, and we identified contextual features that modulate the activity of both elements. In maturing oocytes, this tail lengthening occurs against a backdrop of global deadenylation and the action of C-rich elements that specify tail-length-independent translational repression. In embryos, cytoplasmic polyadenylation becomes more permissive, and additional elements specify waves of stage-specific deadenylation. Together, these findings largely explain the complex tapestry of tail-length changes observed in early frog and fish development, with strong evidence of conservation in both mice and humans.


Subject(s)
3' Untranslated Regions , Oocytes , Poly A , Polyadenylation , Protein Biosynthesis , RNA, Messenger , Animals , Oocytes/metabolism , Oocytes/cytology , Poly A/metabolism , Poly A/genetics , 3' Untranslated Regions/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Gene Expression Regulation, Developmental , Mice , Humans , Embryo, Nonmammalian/metabolism , Embryonic Development/genetics , Female , Xenopus laevis/metabolism , Xenopus laevis/embryology , Xenopus laevis/genetics , Cytoplasm/metabolism
6.
Funct Integr Genomics ; 24(2): 67, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38528184

ABSTRACT

BACKGROUND: Although the events associated with alternative splicing (AS), alternative polyadenylation (APA) and alternative transcription initiation (ATI) can be identified by many approaches based on isoform sequencing (Iso-Seq), these analyses are generally independent of each other and the links between these events are still rarely mentioned. However, an interdependency analysis can be achieved because the transcriptional start site, splice sites and polyA site could be simultaneously included in a long, full-length read from Iso-Seq. RESULTS: We create ASAPA pipeline that enables streamlined analysis for a robust detection of potential links among AS, ATI and APA using Iso-Seq data. We tested this pipeline using Arabidopsis data and found some interesting results: some adjacent introns tend to be simultaneously spliced or retained; coupling between AS and ATI or APA is limited to the initial or terminal intron; and ATI and APA are potentially linked in some special cases. CONCLUSION: Our pipeline enables streamlined analysis for a robust detection of potential links among AS, ATI and APA using Iso-Seq data, which is conducive to a better understanding of transcription landscape generation.


Subject(s)
Alternative Splicing , Polyadenylation , Protein Isoforms/genetics , Computational Biology , High-Throughput Nucleotide Sequencing
7.
Nat Commun ; 15(1): 2583, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38519498

ABSTRACT

Alternative polyadenylation can occur in introns, termed intronic polyadenylation (IPA), has been implicated in diverse biological processes and diseases, as it can produce noncoding transcripts or transcripts with truncated coding regions. However, a reliable method is required to accurately characterize IPA. Here, we propose a computational method called InPACT, which allows for the precise characterization of IPA from conventional RNA-seq data. InPACT successfully identifies numerous previously unannotated IPA transcripts in human cells, many of which are translated, as evidenced by ribosome profiling data. We have demonstrated that InPACT outperforms other methods in terms of IPA identification and quantification. Moreover, InPACT applied to monocyte activation reveals temporally coordinated IPA events. Further application on single-cell RNA-seq data of human fetal bone marrow reveals the expression of several IPA isoforms in a context-specific manner. Therefore, InPACT represents a powerful tool for the accurate characterization of IPA from RNA-seq data.


Subject(s)
Polyadenylation , RNA , Humans , Polyadenylation/genetics , Introns/genetics , Sequence Analysis, RNA , RNA-Seq
8.
Bioinformatics ; 40(3)2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38485700

ABSTRACT

MOTIVATION: Alternative polyadenylation (APA) is a widespread post-transcriptional regulatory mechanism across all eukaryotes. With the accumulation of genome-wide APA sites, especially those with single-cell resolution, it is imperative to develop easy-to-use visualization tools to guide APA analysis. RESULTS: We developed an R package called vizAPA for visualizing APA dynamics from bulk and single-cell data. vizAPA implements unified data structures for APA data and genome annotations. vizAPA also enables identification of genes with differential APA usage across biological samples and/or cell types. vizAPA provides four unique modules for extensively visualizing APA dynamics across biological samples and at the single-cell level. vizAPA could serve as a plugin in many routine APA analysis pipelines to augment studies for APA dynamics. AVAILABILITY AND IMPLEMENTATION: https://github.com/BMILAB/vizAPA.


Subject(s)
Gene Expression Regulation , Polyadenylation , Eukaryota , 3' Untranslated Regions
9.
Sci Rep ; 14(1): 5156, 2024 03 02.
Article in English | MEDLINE | ID: mdl-38431749

ABSTRACT

We have previously introduced the first generation of C3P3, an artificial system that allows the autonomous in-vivo production of mRNA with m7GpppN-cap. While C3P3-G1 synthesized much larger amounts of capped mRNA in human cells than conventional nuclear expression systems, it produced a proportionately much smaller amount of the corresponding proteins, indicating a clear defect of mRNA translatability. A possible mechanism for this poor translatability could be the rudimentary polyadenylation of the mRNA produced by the C3P3-G1 system. We therefore sought to develop the C3P3-G2 system using an artificial enzyme to post-transcriptionally lengthen the poly(A) tail. This system is based on the mutant mouse poly(A) polymerase alpha fused at its N terminus with an N peptide from the λ virus, which binds to BoxBr sequences placed in the 3'UTR region of the mRNA of interest. The resulting system selectively brings mPAPαm7 to the target mRNA to elongate its poly(A)-tail to a length of few hundred adenosine. Such elongation of the poly(A) tail leads to an increase in protein expression levels of about 2.5-3 times in cultured human cells compared to the C3P3-G1 system. Finally, the coding sequence of the tethered mutant poly(A) polymerase can be efficiently fused to that of the C3P3-G1 enzyme via an F2A sequence, thus constituting the single-ORF C3P3-G2 enzyme. These technical developments constitute an important milestone in improving the performance of the C3P3 system, paving the way for its applications in bioproduction and non-viral human gene therapy.


Subject(s)
DNA-Directed RNA Polymerases , Polyadenylation , Animals , Humans , Mice , DNA-Directed RNA Polymerases/genetics , RNA, Messenger/metabolism , Polynucleotide Adenylyltransferase/genetics , Polynucleotide Adenylyltransferase/metabolism , Poly A/genetics , Poly A/metabolism
10.
Methods Mol Biol ; 2774: 269-278, 2024.
Article in English | MEDLINE | ID: mdl-38441771

ABSTRACT

Eukaryotic mRNAs are characterized by terminal 5' cap structures and 3' polyadenylation sites, which are essential for posttranscriptional processing, translation initiation, and stability. Here, we describe a novel biosensor method designed to detect the presence of both cap structures and polyadenylation sites on mRNA molecules. This novel biosensor is sensitive to mRNA degradation and can quantitatively determine capping levels of mRNA molecules within a mixture of capped and uncapped mRNA molecules. The biosensor displays a constant dynamic range between 254 nt and 6507 nt with reproducible sensitivity to increases in capping level of at least 20% and a limit of detection of 2.4 pmol of mRNA. Overall, the biosensor can provide key information about mRNA quality before mammalian cell transfection.


Subject(s)
Mammals , Polyadenylation , Animals , Spectrum Analysis , RNA, Messenger/genetics , Transfection
11.
Cancer Lett ; 588: 216757, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38417668

ABSTRACT

Circulating tumor cell (CTC) clusters exhibit significantly higher metastatic potential compared to single CTCs. However, the underlying mechanism behind this phenomenon remains unclear, and the role of posttranscriptional RNA regulation in CTC clusters has not been explored. Here, we conducted a comparative analysis of alternative splicing (AS) and alternative polyadenylation (APA) profiles between single CTCs and CTC clusters. We identified 994 and 836 AS events in single CTCs and CTC clusters, respectively, with ∼20% of AS events showing differential regulation between the two cell types. A key event in this differential splicing was observed in SRSF6, which disrupted AS profiles and contributed to the increased malignancy of CTC clusters. Regarding APA, we found a global lengthening of 3' UTRs in CTC clusters compared to single CTCs. This alteration was primarily governed by 14 core APA factors, particularly PPP1CA. The modified APA profiles facilitated the cell cycle progression of CTC clusters and indicated their reduced susceptibility to oxidative stress. Further investigation revealed that the proportion of H2AFY mRNA with long 3' UTR instead of short 3' UTR was higher in CTC clusters than single CTCs. The AU-rich elements (AREs) within the long 3' UTR of H2AFY mRNA enhance mRNA stability and translation activity, resulting in promoting cell proliferation and invasion, which potentially facilitate the establishment and rapid formation of metastatic tumors mediated by CTC clusters. These findings provide new insights into the mechanisms driving CTC cluster metastasis.


Subject(s)
Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , 3' Untranslated Regions , Polyadenylation , RNA Splicing , Cluster Analysis , Neoplasm Metastasis , Serine-Arginine Splicing Factors/metabolism , Phosphoproteins/metabolism
12.
Nat Commun ; 15(1): 959, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302465

ABSTRACT

Alternative polyadenylation (APA) is strikingly dysregulated in many cancers. Although global APA dysregulation is frequently associated with poor prognosis, the importance of most individual APA events is controversial simply because few have been functionally studied. Here, we address this gap by developing a CRISPR-Cas9-based screen to manipulate endogenous polyadenylation and systematically quantify how APA events contribute to tumor growth in vivo. Our screen reveals individual APA events that control mouse melanoma growth in an immunocompetent host, with concordant associations in clinical human cancer. For example, forced Atg7 3' UTR lengthening in mouse melanoma suppresses ATG7 protein levels, slows tumor growth, and improves host survival; similarly, in clinical human melanoma, a long ATG7 3' UTR is associated with significantly prolonged patient survival. Overall, our study provides an easily adaptable means to functionally dissect APA in physiological systems and directly quantifies the contributions of recurrent APA events to tumorigenic phenotypes.


Subject(s)
Melanoma , Polyadenylation , Animals , Mice , Humans , 3' Untranslated Regions/genetics , Melanoma/genetics , Early Detection of Cancer
13.
RNA ; 30(4): 418-434, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38302256

ABSTRACT

3' untranslated regions (3' UTRs) are critical elements of messenger RNAs, as they contain binding sites for RNA-binding proteins (RBPs) and microRNAs that affect various aspects of the RNA life cycle including transcript stability and cellular localization. In response to T cell receptor activation, T cells undergo massive expansion during the effector phase of the immune response and dynamically modify their 3' UTRs. Whether this serves to directly regulate the abundance of specific mRNAs or is a secondary effect of proliferation remains unclear. To study 3'-UTR dynamics in T helper cells, we investigated division-dependent alternative polyadenylation (APA). In addition, we generated 3' end UTR sequencing data from naive, activated, memory, and regulatory CD4+ T cells. 3'-UTR length changes were estimated using a nonnegative matrix factorization approach and were compared with those inferred from long-read PacBio sequencing. We found that APA events were transient and reverted after effector phase expansion. Using an orthogonal bulk RNA-seq data set, we did not find evidence of APA association with differential gene expression or transcript usage, indicating that APA has only a marginal effect on transcript abundance. 3'-UTR sequence analysis revealed conserved binding sites for T cell-relevant microRNAs and RBPs in the alternative 3' UTRs. These results indicate that poly(A) site usage could play an important role in the control of cell fate decisions and homeostasis.


Subject(s)
MicroRNAs , Polyadenylation , 3' Untranslated Regions , MicroRNAs/genetics , MicroRNAs/metabolism , RNA-Seq , RNA, Messenger/metabolism , T-Lymphocytes, Helper-Inducer/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
14.
Cell Rep Methods ; 4(2): 100707, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38325383

ABSTRACT

Alternative polyadenylation (APA) is a key post-transcriptional regulatory mechanism; yet, its regulation and impact on human diseases remain understudied. Existing bulk RNA sequencing (RNA-seq)-based APA methods predominantly rely on predefined annotations, severely impacting their ability to decode novel tissue- and disease-specific APA changes. Furthermore, they only account for the most proximal and distal cleavage and polyadenylation sites (C/PASs). Deconvoluting overlapping C/PASs and the inherent noisy 3' UTR coverage in bulk RNA-seq data pose additional challenges. To overcome these limitations, we introduce PolyAMiner-Bulk, an attention-based deep learning algorithm that accurately recapitulates C/PAS sequence grammar, resolves overlapping C/PASs, captures non-proximal-to-distal APA changes, and generates visualizations to illustrate APA dynamics. Evaluation on multiple datasets strongly evinces the performance merit of PolyAMiner-Bulk, accurately identifying more APA changes compared with other methods. With the growing importance of APA and the abundance of bulk RNA-seq data, PolyAMiner-Bulk establishes a robust paradigm of APA analysis.


Subject(s)
Deep Learning , Polyadenylation , Humans , Polyadenylation/genetics , RNA-Seq , RNA , Sequence Analysis, RNA/methods , Algorithms
15.
Mol Cell ; 84(6): 1062-1077.e9, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38309276

ABSTRACT

Inverted Alu repeats (IRAlus) are abundantly found in the transcriptome, especially in introns and 3' untranslated regions (UTRs). Yet, the biological significance of IRAlus embedded in 3' UTRs remains largely unknown. Here, we find that 3' UTR IRAlus silences genes involved in essential signaling pathways. We utilize J2 antibody to directly capture and map the double-stranded RNA structure of 3' UTR IRAlus in the transcriptome. Bioinformatic analysis reveals alternative polyadenylation as a major axis of IRAlus-mediated gene regulation. Notably, the expression of mouse double minute 2 (MDM2), an inhibitor of p53, is upregulated by the exclusion of IRAlus during UTR shortening, which is exploited to silence p53 during tumorigenesis. Moreover, the transcriptome-wide UTR lengthening in neural progenitor cells results in the global downregulation of genes associated with neurodegenerative diseases, including amyotrophic lateral sclerosis, via IRAlus inclusion. Our study establishes the functional landscape of 3' UTR IRAlus and its role in human pathophysiology.


Subject(s)
Polyadenylation , Tumor Suppressor Protein p53 , Humans , Mice , Animals , Tumor Suppressor Protein p53/genetics , 3' Untranslated Regions/genetics , Gene Expression Regulation , Introns
16.
PLoS Pathog ; 20(2): e1012061, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38416782

ABSTRACT

Alternative polyadenylation (APA) is a widespread mechanism of gene regulation that generates mRNA isoforms with alternative 3' untranslated regions (3' UTRs). Our previous study has revealed the global 3' UTR shortening of host mRNAs through APA upon viral infection. However, how the dynamic changes in the APA landscape occur upon viral infection remains largely unknown. Here we further found that, the reduced protein abundance of CPSF6, one of the core 3' processing factors, promotes the usage of proximal poly(A) sites (pPASs) of many immune related genes in macrophages and fibroblasts upon viral infection. Shortening of the 3' UTR of these transcripts may improve their mRNA stability and translation efficiency, leading to the promotion of type I IFN (IFN-I) signalling-based antiviral immune responses. In addition, dysregulated expression of CPSF6 is also observed in many immune related physiological and pathological conditions, especially in various infections and cancers. Thus, the global APA dynamics of immune genes regulated by CPSF6, can fine-tune the antiviral response as well as the responses to other cellular stresses to maintain the tissue homeostasis, which may represent a novel regulatory mechanism for antiviral immunity.


Subject(s)
Polyadenylation , Virus Diseases , mRNA Cleavage and Polyadenylation Factors , Humans , 3' Untranslated Regions/genetics , Down-Regulation , Immunity/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Virus Diseases/genetics , Mice , Animals
17.
Am J Hum Genet ; 111(3): 562-583, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38367620

ABSTRACT

Genetic variants are involved in the orchestration of alternative polyadenylation (APA) events, while the role of DNA methylation in regulating APA remains unclear. We generated a comprehensive atlas of APA quantitative trait methylation sites (apaQTMs) across 21 different types of cancer (1,612 to 60,219 acting in cis and 4,448 to 142,349 in trans). Potential causal apaQTMs in non-cancer samples were also identified. Mechanistically, we observed a strong enrichment of cis-apaQTMs near polyadenylation sites (PASs) and both cis- and trans-apaQTMs in proximity to transcription factor (TF) binding regions. Through the integration of ChIP-signals and RNA-seq data from cell lines, we have identified several regulators of APA events, acting either directly or indirectly, implicating novel functions of some important genes, such as TCF7L2, which is known for its involvement in type 2 diabetes and cancers. Furthermore, we have identified a vast number of QTMs that share the same putative causal CpG sites with five different cancer types, underscoring the roles of QTMs, including apaQTMs, in the process of tumorigenesis. DNA methylation is extensively involved in the regulation of APA events in human cancers. In an attempt to elucidate the potential underlying molecular mechanisms of APA by DNA methylation, our study paves the way for subsequent experimental validations into the intricate biological functions of DNA methylation in APA regulation and the pathogenesis of human cancers. To present a comprehensive catalog of apaQTM patterns, we introduce the Pancan-apaQTM database, available at https://pancan-apaqtm-zju.shinyapps.io/pancanaQTM/.


Subject(s)
Diabetes Mellitus, Type 2 , Neoplasms , Humans , Polyadenylation/genetics , Diabetes Mellitus, Type 2/genetics , Neoplasms/genetics , Neoplasms/pathology , Gene Expression Regulation , DNA Methylation/genetics , 3' Untranslated Regions
18.
Elife ; 132024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319152

ABSTRACT

A self-cleaving ribozyme that maps to an intron of the cytoplasmic polyadenylation element-binding protein 3 (Cpeb3) gene is thought to play a role in human episodic memory, but the underlying mechanisms mediating this effect are not known. We tested the activity of the murine sequence and found that the ribozyme's self-scission half-life matches the time it takes an RNA polymerase to reach the immediate downstream exon, suggesting that the ribozyme-dependent intron cleavage is tuned to co-transcriptional splicing of the Cpeb3 mRNA. Our studies also reveal that the murine ribozyme modulates maturation of its harboring mRNA in both cultured cortical neurons and the hippocampus: inhibition of the ribozyme using an antisense oligonucleotide leads to increased CPEB3 protein expression, which enhances polyadenylation and translation of localized plasticity-related target mRNAs, and subsequently strengthens hippocampal-dependent long-term memory. These findings reveal a previously unknown role for self-cleaving ribozyme activity in regulating experience-induced co-transcriptional and local translational processes required for learning and memory.


Stored within DNA are the instructions cells need to make proteins. In order for proteins to get made, the region of DNA that codes for the desired protein (known as the gene) must first be copied into a molecule called messenger RNA (or mRNA for short). Once transcribed, the mRNA undergoes further modifications, including removing redundant segments known as introns. It then travels to molecular machines that translate its genetic sequence into the building blocks of the protein. Following transcription, some RNAs can fold into catalytic segments known as self-cleaving ribozymes which promote the scission of their own genetic sequence. One such ribozyme resides in the intron of a gene for CPEB3, a protein which adds a poly(A) tail to various mRNAs, including some involved in learning and memory. Although this ribozyme is found in most mammals, its biological role is poorly understood. Previous studies suggested that the ribozyme cleaves itself at the same time as the mRNA for CPEB3 is transcribed. This led Chen et al. to hypothesize that the rate at which these two events occur impacts the amount of CPEB3 produced, resulting in changes in memory and learning. If the ribozyme cleaves quickly, the intron is disrupted and may not be properly removed, leading to less CPEB3 being made. However, if the ribozyme is inhibited, the intron remains intact and is efficiently excised, resulting in higher levels of CPEB3 protein. To test how the ribozyme impacts CPEB3 production, Chen et al. inhibited the enzyme from cutting itself with antisense oligonucleotides (ASOs). The ASOs were applied to in vitro transcription systems, neurons cultured in the laboratory and the brains of living mice in an area called the hippocampus. The in vitro and cell culture experiments led to higher levels of CPEB3 protein and the addition of more poly(A) tails to mRNAs involved in neuron communication. Injection of the ASOs into the brains of mice had the same effect, and also improved their memory and learning. The findings of Chen et al. show a new mechanism for controlling protein production, and suggest that ASOs could be used to increase the levels of CPEB3 and modulate neuronal activity. This is the first time a biological role for a self-cleaving ribozyme in mammals has been identified, and the approach used could be applied to investigate the function of two other self-cleaving ribozymes located in introns in humans.


Subject(s)
RNA, Catalytic , Mice , Humans , Animals , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Polyadenylation , Memory, Long-Term , Neurons/metabolism , RNA-Binding Proteins/metabolism
19.
BMC Cardiovasc Disord ; 24(1): 128, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38418967

ABSTRACT

OBJECTIVE: Calcific aortic valve disease (CAVD) is the leading cause of angina, heart failure, and death from aortic stenosis. However, the molecular mechanisms of its progression, especially the complex disease-related transcriptional regulatory mechanisms, remain to be further elucidated. METHODS: This study used porcine valvular interstitial cells (PVIC) as a model. We used osteogenic induced medium (OIM) to induce calcium deposition in PVICs to calcify them, followed by basic fibroblast growth factor (bFGF) treatment to inhibit calcium deposition. Transcriptome sequencing was used to study the mRNA expression profile of PVICs and its related transcriptional regulation. We used DaPars to further examine alternative polyadenylation (APA) between different treatment groups. RESULTS: We successfully induced calcium deposition of PVICs through OIM. Subsequently, mRNA-seq was used to identify differentially expressed mRNAs for three different treatments: control, OIM-induced and OIM-induced bFGF treatment. Global APA events were identified in the OIM and bFGF treatment groups by bioinformatics analysis. Finally, it was discovered and proven that catalase (CAT) is one of the potential targets of bFGF-induced APA regulation. CONCLUSION: We described a global APA change in a calcium deposition model related to CAVD. We revealed that transcriptional regulation of the CAT gene may contribute to bFGF-induced calcium deposition inhibition.


Subject(s)
Aortic Valve Stenosis , Aortic Valve/pathology , Calcinosis , Swine , Animals , Aortic Valve Stenosis/metabolism , Aortic Valve/metabolism , Calcium/metabolism , Fibroblast Growth Factor 2/genetics , Fibroblast Growth Factor 2/pharmacology , Polyadenylation , Cells, Cultured , Calcinosis/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
Nat Commun ; 15(1): 1729, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409266

ABSTRACT

Alternative polyadenylation plays an important role in cancer initiation and progression; however, current transcriptome-wide association studies mostly ignore alternative polyadenylation when identifying putative cancer susceptibility genes. Here, we perform a pan-cancer 3' untranslated region alternative polyadenylation transcriptome-wide association analysis by integrating 55 well-powered (n > 50,000) genome-wide association studies datasets across 22 major cancer types with alternative polyadenylation quantification from 23,955 RNA sequencing samples across 7,574 individuals. We find that genetic variants associated with alternative polyadenylation are co-localized with 28.57% of cancer loci and contribute a significant portion of cancer heritability. We further identify 642 significant cancer susceptibility genes predicted to modulate cancer risk via alternative polyadenylation, 62.46% of which have been overlooked by traditional expression- and splicing- studies. As proof of principle validation, we show that alternative alleles facilitate 3' untranslated region lengthening of CRLS1 gene leading to increased protein abundance and promoted proliferation of breast cancer cells. Together, our study highlights the significant role of alternative polyadenylation in discovering new cancer susceptibility genes and provides a strong foundational framework for enhancing our understanding of the etiology underlying human cancers.


Subject(s)
Neoplasms , Transcriptome , Humans , Polyadenylation/genetics , Genome-Wide Association Study , 3' Untranslated Regions/genetics , Gene Expression Profiling , Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...